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1. I n t r o d u c t i o n  and Summarv 

T h i s  paper  p rov ides  a t h e o r y  of i n d i v i d u a l  b idding  be- 

h a v i o r  i n  c o m p e t i t i v e  s e a l e d  t e n d e r  marke t s .  T h e  o b j e c t i v e  

i s  t o  fo rmula t e  a b idd ing  model i n  t e r m s  of modern u t i l i t y  

t h e o r y  and t o  d e r i v e  i t s  bas ic  p r o p e r t i e s .  The model p re -  

s e n t e d  i n  t h i s  paper  d i f f e r s  i n  impor t an t  ways from t h e  

expec ted  u t i l i t y  maximization b idding  models i ndependen t ly  

fo rmula t ed  by G r e i s m e r ,  Lev i t an ,  and Shubik [4], and by 

Vernon Smith [ 7 1 .  For one t h i n g ,  bo th  G r e i s m e r ,  e t  a l ,  

and Smith assume t h a t  t h e  b i d d e r  maximizes expec ted  u t i l i t y  

of income. We assume t h a t  t h e  b i d d e r  maximizes expec ted  

u t i l i t y  of w e a l t h ,  t h e  improvement be ing  t h a t  u t i l i t y  i s  

made t o  depend on both  the  s i z e  of t h e  payoff  and t h e  l e v e l  

o f  i n i t i a l  wea l th .  

(1) Research p a r t i a l l y  sponsored by t h e  A i r  Force  O f f i c e  of 

S t a t e s  A i r  Fo rce ,  under AFOSR Grant  No. AF-AFOSR-746-65 and 
p a r t i a l l y  sponsored by t h e  N a t i o n a l  Space Admin i s t r a t ion  under 
C o n t r a c t  NGR-26-004-012 .  

. S c i e n t i f i c  Resea rch ,  Of f i ce  of Aerospace Research,  U n i t e d .  

( 2 )  Research sponsored by t h e  N a t i o n a l  Space Admin i s t r a t ion  
under  C o n t r a c t  >?GR-26-004-012 .  
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A second difference relates to the form of the utility 

function. Greismer, et al, implicitly assume that utility 

is a homogeneous linear function of income. 

that linear utility functions, whether or not homogeneous, 

imply "neu-trality" to risk; i.e., the ir,dividual will be 

indifferent between engaging in any arbitrary bet and re- 

ceiving the sure option equal to the actuarial value of the 

bet. This type of implied behavior seems hardly consistent 

with intuitive evidence or observation. On the other hand, 

Smith assumes in places that utility is quadratic in income. 

This form of utility function is very prevalent in the 

literature on decision making under uncertainty and has been 

the basis for the mean-variance approach to the theory of 

portfolio selection. However, the quadratic utility function 

implies implausible behavior. A s  K. J. Arrow [2] has noted, 

it violates the principle of decreasing absolute risk aversion. 

It a l so  implies that eventually wealth has negative marginal 

utility, so that it would be better to throw some away. Be- 

cause of the implausible behavioral implications of linear 

and quadratic utility functions, we assume that utility is 

a concave function of wealth, this being the most general 

form of utility function which characterizes risk averse 

behavior. 

It is well known 

Finally, the emphasis in this paper on deriving the 

formal properties of the model and giving their economic 

, 
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i n t e r p r e t a t i o n  i s  a l s o  q u i t e  un ique  and t u r n s  o u t  t o  be 

rewarding .  A n a t u r a l  r e l a t i o n s h i p  emerges between t h e  p r i n -  

c i p a l  p r o p e r t i e s  of t h e  model and c e r t a i n  t o o l s  and c o n c e p t s  

which have been developed i n  some b ranches  o f  ma themat i ca l  

s t a t i s t i c s  on t h e  one hand, and i n  t h e  t h e o r y  of risk a v e r s i o n  

o n  t h e  o t h e r .  S p e c i f i c a l l y ,  a n  i n v e s t i g a t i a n  of  t h e  s o l u t i o n  

p r o p e r t i e s  of t h e  model r e v e a l s  t h e  i m p o r t a n t  r o l e  of t h e  

"haza rd  ra te"  o r  " f a i l u r e  ra te"  f u n c t i o n ,  a b a s i c  concep t  i n  

t h e  ma themat i ca l  t h e o r y  of r e l i a b i l i t y  131. A t  t h e  same t i m e ,  

w e  f i n d  t h a t  some o f  t h e  more i m p o r t a n t  compara t ive  s t a t i c s  

p r o p e r t i e s  of t h e  model depend on t h e  behav io r  o f  t w o  f u n c t i o n s ,  

o n e  of which h a s  been independen t ly  e s t a b l i s h e d  as  a measure 

of r i s k  a v e r s i o n  by K .  J .  A r r o w  111, 121, and by J .  W .  P r a t t  

[6]. A s  f a r  as w e  know, t h e  o t h e r  f u n c t i o n  has  n o t  bccn 

i n t e r p r e t e d  as a measure of r i s k  a v e r s i o n  i n  t h e  l i t e r a t u r e  

p r ior  t o  t h i s .  W e  e s t a b l i s h  it a s  such  and r e l a t e  it t o  t h e  

work of Arrow and t o  tha t  o f  P r a t t .  

I n  S e c t i o n  2 w e  f o r m u l a t e  t h e  b i d d i n g  model and g i v e  con- 

d i t i o n s  under  which t h e  model has  a un ique  s o l u t i o n .  The 

h a z a r d  r a t e  f u n c t i o n  i s  i n t e r p r e t e d  and t h e  e x p r e s s i o n  d e t e r -  

min ing  t h e  o p t i m a l  b i d  i s  shown t o  have a s t r a i g h t f o r w a r d  

b e h a v i o r a l  meaning. S e c t i o n  3 c o n t a i n s  a summary o f  t h e  work 

o f  A r r o w  and P r a t t  and some new r e s u l t s  i n  t h e  t h e o r y  of  r i s k  

a v e r s i o n .  S e c t i o n  4 c o n t a i n s  an i n v e s t i g a t i o n  of t h e  compara- 

t i v e  s t a t i c s  p r o p e r t i e s  of t h e  model and t h e i r  r e l a t i o n  t o  t h e  
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e x i s t e n c e  of r i s k  a v e r s i o n  and t h e  behav io r  of two measures 

of r i s k  a v e r s i o n .  I n  c o n t r a s t  t o  t h e  u s u a l  t r e a t m e n t  of 

comparat ive s t a t i c s  i n  economic t h e o r y ,  bo th  t h e  d i r e c t i o n  of 

change i n  t h e  op t ima l  b i d  p r i c e  and bounds on i t s  magnitude 

a r e  cons ide red .  The a n a l y s i s  i s  soriiewhat revea l i r ig  of t h e  

n a t u r e  of t h e  s u b s t i t u t i o n s  between " s a f e t y "  (as measured 

by t h e  p r o b a b i l i t y  of  success )  and p o t e n t i a l  p r o f i t s  t h a t  

u n d e r l i e  t h e  b i d d e r ' s  response  t o  a change i n  a s p e c i f i e d  

parameter .  I n  S e c t i o n  5 w e  b r i e f l y  o u t l i n e  p o s s i b l e  d i r e c -  

t i o n s  i n  which t h e  model can be extended.  

2 .  An Expected U t i l i t y  Maximization B idd ins  Model 

T h i s  sec t ion  d e a l s  with t h e  s t r u c t u r e  and b a s i c  prop- 

er t ies  of  an  expected u t i l i t y  maximizat ion bid.ding model f o r  

t h e  s e a l e d  t e n d e r  s e l l i n g  m a r k e t .  The i n s t i t u t i o n a l  f e a t u r e s  

of t h i s  market  a r e  o u t l i n e d  as fo l lows :  t h e  market  c o n s i s t s  

of a number of se l lers  competing f o r  a s i n g l e  c o n t r a c t ;  each  

sel ler  submi ts  a s i n g l e  s e a l e d  b i d ;  and t h e  c o n t r a c t  i s  awarded 

t o  t h e  lowest b i d d e r .  Each s e l l e r ' s  d e c i s i o n  v a r i a b l e  i s  h i s  

b i d  p r i c e .  Every se l le r  rea l izes  t h a t  t h e  h i g h e r  h i s  b i d  

p r i c e  t h e  s m a l l e r  t h e  p r o b a b i l i t y  of g e t t i n g  t h e  c o n t r a c t ,  

b u t  t h e  l a r g e r  t h e  p r o f i t s  should  he g e t  i t .  Thus, each 

submi t t ed  b i d  r e f l e c t s  a n  a t t e m p t  t o  ba l ance  p r o b a b i l i t y  and 

p r o f i t  c o n s i d e r a t i o n s .  

, 
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To introduce the model  we focus on a typical seller and 

denote his average cost by c . Because n , the size of the 
contract, is fixed in the type of market under consideration, 

c = c ( n )  is a constant for any given bidding decision. Re- 

garding the seller's beliefs abogt the bidding behavior of 

his opponents, we assume that the seller attaches a proba- 

bility distribution F ( b )  to the minimum of his competitor's 

bid prices b . We let p denote the bid submitted by the 

seller. He will get the contract if he submits a bid that 

is below all of the bids submitted by his competitors, that 

is, if p < b . The probability that his bid will be success- 

f u l  is 

( 2 . 1 )  P ~ { P  < bI = 1 - F ( p )  

We assume that F is continuous, so that the probability of 

a "tie" between bids is zero; because F is continuous, what 

happens in case of a tie does not affect the seller's proba- 

bility of getting the contract. 

The bidding situation f a c i n g  the seller is equivalent 

to choosing p in a lottery which offers a prize of n(p - c) 

with probability 1 - F(p) and a prize of zero with proba- 

bility F(p) . Note that the prize zero corresponds to an 

unsuccessful bid. The utility of a prize depends on its 

size and on the seller's initial wealth w . In particular, 

the utility of the prize zero is u(w) . The seller, being 
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a von Neumann-Morgenstern expec ted  u t i l i t y  maximizer ,  

chooses  p so as  t o  maximize his expec ted  u t i l i t y  

E (p ;c ,w ,n )  , w h e r e  

( 2 - 2 )  E(p;c ,W,n)  - = [1 - F ( p ) I u [ n ( p  - C )  I- W l  + F ( p ) u ( W ) .  

A r ea r r angemen t  of terms reduces  t h i s  t o  t h e  more conven ien t  

form 

( 2 . 3 )  E(p ;c ,w ,n )  [1 - F ( p ) I  [ u ( n ( p  - c)  + w} - u(w) 1 + u ( w ) .  

Any p which maximizes E(p ;c ,w ,n )  5 E ( p )  f o r  f i x e d  v a l u e s  

of t h e  pa rame te r s  c ,  w ,  and n w i l l  be c a l l e d  a s o l u t i o n  

of t h e  model o r  a n  op t ima l  b i d .  

Our immediate concern i s  whether  t h e  model h a s  a s o l u -  

t i o n ,  and if so ,  whether  t h e  s o l u t i o n  i s  unique .  

theorems p r e s e n t e d  below g i v e  c o n d i t i o n s  under  which t h e r e  

e x i s t s  a n  o p t i m a l  b i d  and c o n d i t i o n s  under  which t h a t  o p t i m a l  

b i d  i s  unique .  

number 

( 2 . 4 )  X = min{p:F(p) = 1) . 
From t h e  d e f i n i t i o n  of X it  follows t h a t  i f  t h e  se l le r  

submi t s  a b i d  g rea te r  than  or  e q u a l  t o  

opponents  w i l l  g e t  t h e  c o n t r a c t ,  so  E(p )  = u(w) f o r  a l l  

p A .  I f ,  on t h e  o t h e r  hand, t h e  s e l l e r ' s  b i d  p i s  less 

t h a n  o r  e q u a l  t o  h i s  u n i t  cost  

g a i n  even i f  h e  wins t h e  c o n t r a c t  s i n c e  E ( p )  < u(w) f o r  

a l l  p < c. Thus,  f o r  a b i d  p t o  be  " r e a s o n a b l e , "  i t  

must  s a t i s f y  c < p and p < A .  I n  o r d e r  t h a t  a " reason-  

able" b i d  be a v a i l a b l e  t o  t h e  s e l l e r  w e  r e q u i r e  t h a t  

The t w o  

To s t a t e  t h e  theorems w e  need t o  d e f i n e  t h e  

X t h e n  one  o f  h i s  

c ,  t h e n  he  h a s  n o t h i n g  t o  

- 

- 

c < A. 

, 
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W e  n o t e  f r o m  ( 2 . 3 )  t h a t  e v e r y  b i d  i n  t h e  i n t e r v a l  ( c ,  A) 

gives a h i g h e r  expec ted  u t i l i t y  E ( p )  t h a n  u(w) . W e  are  

now i n  a p o s i t i o n  t o  s t a t e  o u r  two theorems on t h e  e x i s t -  

ence  and un iqueness  of a n  o p t i m a l  b i d .  ' 

Theorem 1 : ( E x i s t e n c e  T h e o r e m )  I f  3 

I ( A I )  C < X < 

( A 2 1  u i s  con t inuous  and s t r i c t l y  i n c r e a s i n g ,  and 

( A 3 )  F i s  con t inuous  ( w i t h  o r  w i t h o u t  a d e n s i t y ) ,  

t h e n  t h e r e  e x i s t s  an  op t ima l  b i d  ( n o t  n e c e s s a r i l y  unique)  

i n  t h e  i n t e r v a l  ( c ,  A ) .  

Proof: Under assumpt ions  ( A l )  , ( A 2 ) ,  and ( A 3 )  w e  see t h a t  

E ( p )  = [ l - F ( p )  1 [u{n(p-c)+wI-u(w) 1 + u(w) i s  a con t inuous  

f u n c t i o n  of p on  t h e  compact se t  [ c ,  X I ,  t h a t  

E ( p )  > u(w) for a l l  p i n  ( c ,  A ) ,  and t h a t  

E ( c )  = E ( p )  = u(w) . Thus t h e r e  e x i s t s  a number 

n e c e s s a r i l y  unique)  i n  [ c ,  X I  such t h a t  

E ( p  ) = max(E(p) I C  p - < X I ,  and s i n c e  

E ( p )  > u(w) = E ( c )  = E ( A )  f o r  a l l  p i n  (c,  A ) ,  it 

fo l lows  t h a t  po # c and po # A .  

( n o t  PO 

0 

( 3 )  The assumpt ion  X < 00 i s  n o t  nec.essary i n  t h i s  work. 
I n  t h i s  proof  w e  use [ l - F ( p ) ] u { n ( p - c ) + w )  + 0 as p + X .  
T h i s  i s  t r u e  i f  u i s  bounded, o r  i f  X < m, or i f  
I p d F ( p )  i s  f i n i t e  and u i s  concave.  W e  u s e  X < n o t  
o n l y  because  t h e  assumption s i m p l i f i e s  t h e  proof of  t h i s  
theorem,  b u t  a l s o  because  it i s  d i f f i c u l t  ( i f  n o t  imposs- 
i b l e )  t o  conce ive  of  a s i t u a t i o n  i n  which X = a. 

, 
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Having g i v e n  c o n d i t i o n s  u n G x  which t h e r e  e x i s t s  an 

optimal b i d ,  w e  now show t h a t  under  s u i t a b l e  assumpt ions  

t h i s  o p t i m a l  b i d  i s  unique.  

theorem assumpt ions  ( A 2 a )  and (A3a) imply ( A 2 )  and (A3) of 

Theorem 1 r e s p e c t i v e l y .  

Note t h a t  i n  t h e  f o l l o w i n g  

Theorem 2 :  (Uniqueness t h e o r e m )  Suppose: 

(Al) c < A < ; 

( A 2 a )  u i s  con t inuous ,  s t r i c t l y  i n c r e a s i n g ,  and 

concave ; 

(A3a) F i s  a b s o l u t e l y  con t inuous  w i t h  d e n s i t y  f ,  

and t h e  hazard  r a t e  f u n c t i o n  

i s  a nondecreas ing  f u n c t i o n  o f  

f ( p ) / [ l - F ( p ) ]  

p .  

Then t h e r e  is a unique  op t ima l  b i d  

(c, A ) ,  and fo r  p i n  ( c ,  A ) ,  t h e  e x p r e s s i o n  

po i n  t h e  i n t e r v a l  

i s  p o s i t i v e  f o r  p < p, and n e g a t i v e  f o r  p > p,. I n  

( 2 . 5 ) ,  t h e  m a r g i n a l  u t i l i t y  f u n c t i o n  u '  can be t a k e n  t o  

be t h e  r i g h t  d e r i v a t i v e  of u ,  t h a t  i s  

u ( t  + h)  - u ( t )  
h 

I f  f (p )  and u t  [ n ( p  - c )  + w l  are  con t inuous  f o r  p i n  

(c ,  A ) ,  t h e n  Po 

( 2 . 5 ) .  

u ' ( t )  = l i m  
hJ-0 

i s  t h e  unique  z e r o  i n  ( c ,  A )  of  e x p r e s s i o n  

, 
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P roof :  

Because of t h e  assumptions made a b o u t  u and f , 

E ( p )  = - F ( p ) l  [u{n(p  - c) + w} - u ( w ) l  f u(w) 

h a s  a r i g h t  d e r i v a t i v e  D t ( E ( p ) )  a lmos t  everywhere and 

i s  t h e  i n t e g r a l  of t h i s  r i g h t  d e r i v a t i v e .  ( W e  can con- 

s i d e r  f t o  be t h e  r i g h t  d e r i v a t i v e  of F . )  W e  have 

D+ (E ( p )  1 = -f ( p )  [u{n (p-c) tw} - u (w)  3 + [ 1-F (p )  1 nu '  [n  (p-c) +wl 

E (a )  (b) 

where 

a [ l - F ( p )  1 [u{n (p-c) -t w} - u ( w )  1 

and 

and u ' ( t )  = D S ( u ( t ) )  i s  t h e  m a r g i n a l  u t i l i t y .  From t h e  

d e f i n i t i o n  of A w e  see t h a t  [ l - F ( p ) ]  > 0 f o r  a l l  

p < h , and s i n c e  u i s  s t r i c t l y  i n c r e a s i n g ,  

u (n (p -c )  + w} - u(w) > 0 f o r  p > c . Thus t h e  e x p r e s s i o n  

(a )  i s  p o s i t i v e  f o r  c < p < h . 
i n  t h e  PO W e  w i l l  show t h a t  t h e r e  e x i s t s  a un ique  

i n t e r v a l  ( c ,  A )  such  t h a t  t h e  e x p r e s s i o n  (b)  i s  p o s i t i v e  

f o r  p < p and n e g a t i v e  f o r  p > po . Then, f o r  p i n  

( c ,  1) , t h i s  would make D + ( E ( p ) )  p o s i t i v e  f o r  p < po 

and n e g a t i v e  f o r  p > po so t h a t  E ( p )  i s  s t r i c t l y  

i n c r e a s i n g  f o r  p < po and s t r i c t l y  d e c r e a s i n g  f o r  p > po , 

and t h u s  E ( p )  has  a unique  maximum a t  p = po. 

0 



- 1 0  - 

W e  n o t e  t h a t :  

( 3 )  

so t h a t  

( 4 )  

U '  [n(p-c)  + w] i s  p o s i t i v e  and non- inc reas ing  

i n  p s i n c e  u i s  concave and s t r i c t l y  i n c r e a s i n g :  

l i m  u [ n ( p - c )  t wl - u(w) = 0 ;  
P-fC 

u [ n ( p - c )  + w] - u(w) i s  s t r i c t l y  i n c r e a s i n g  i n  p ; 

i s  s t r i c t l y  d e c r e a s i n g  u '  [n (p -c )  + w] 
u [ n ( p - c )  + wl - u(w) 

i n  p f o r  c < p ; 

and 

- - a .  
u' [n(p-c)  -- + w] ( 5 )  l i m  

p+c 
u [ n ( p - c >  + wl - u(w) 

By assumption , i s  non-decreas ing ,  so  e x p r e s s i o n  ( b )  
1-F ( p )  

i s  s t r i c t l y  d e c r e a s i n g  i n  p . I f  l i m ( b )  > 0 and 
P+C 

f (PI 
1-F ( p )  

l i m ( b )  < 0 , t h e n  t h e  d e s i r e d  p, e x i s t s .  But l i m  
P+X P+C 

is non-negat ive  and f i n i t e ,  so  it follows from (5 )  t h a t  

S i n c e  h < m, 
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f(t) - non-decreasing we must have lim l-F(t) - 00. 

t+A 
Thus we see 

that lim(b) = -00 < 0. Hence conditions for the desired 
P+A 

to exist are satisfied. PO 
If u'(n(p-c) + w) and f(p) are continuous for p 

in (c, A ) ,  then expression (b) is continuous for p in 

(c, A )  and must assume the value zero somewhere in the 

interval by the mean value theorem. Since (b) is either 

positive or negative for each p # po in (c, A), it 

follows that p, is the unique zero of expression (b) 

in (c, A ) .  0 
In the remainder of this section we denonstra-te that 

the expression (2.5) determining the optimal bid has a 

meaningful economic interpretation. To show this we define 

nu'[n(p-c) + w] 
u[n(p-c) + wl - u(w) and G(p) E . G(p) can f (PI 

H ( p )  E l-F(p) 

be thought of as the rate of proportionate change in utility 

of profits as a function of the bid price p .  Note that be- 

cause of the assumptions about u, G(p) is a strictly de- 

creasing function of p. The function H plays an important 

role in many disciplines, particularly actuarial science and 

the mathematical theory of reliability, and is usually called 

the "hazard rate'' or the "failure rate." In the context 
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of our model, H (p) dp approximately represents the proba- 

bility that a bid of size p + dp would be unsuccessful 

given that a bid of size p would have been successful. 

Thus H(p) is the rate of proportionate increase in the 

probabi1.j.t-y of losing the contract as a function of p . 
It seems natural to assume that H(p) is a non-decreasing 

function of p . This is equivalent to assuming that the 

conditional probability that the minimum of the opponents' 

bids is at least p + dp given that it is at least p 

is a non-increasing function of p . (Intuitively, one 

-_ 

might think of this, when applied to an individual, as 

saying that if a person is contemplating making a bid of 

p , then he is more likely to raise it an amount dp if 

p is a low bid than if p is a high bid.) 

The above definitions enable us to rewrite expressioll 

(2.5) as G(p) - H(p) . From Theorem 2 we know there exists 

in the interval (c, A) such that a unique optimal bid 

G(p) 3 H(p) when p > p, . Thus for bids less (greater) 

than po the rate of proportionate increase in the utility 

of profits exceeds (falls short of) the rate of proportionate 

increase in the probability of losing the contract, and 

expected utility can be increased by raising (lowering) the 

PO 
< 

bid. Theorem 2 further states that if the marginal utility 

U' [n(p-c> + wl and the probability density f (p) are 
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c o n t i n u o u s  f u n c t i o n s  of p i n  t h e  i n t e r v a l  ( c ,  A) , t h e n  

t h e  o p t i m a l  b id  

G(p)  = H(p) . Tha t  i s ,  G(po) = H(po) and G(p)  i H(p) 

when p > po . Thus when m a r g i n a l  u t i l i t y  and t h e  proba- 

b i l i t y  d e n s i t y  a re  con t inuous  f u n c t i o n s  of p , expec ted  

u t i l i t y  i s  maximized and t h e  o p t i m a l  b i d  i s  d e t e r n i n e t i  by 

e q u a t i n g  t h e  r a t e  of p r o p o r t i o n a t e  i n c r e a s e  i n  t h e  u t i l i t y  

of p r o f i t s  t o  t h e  r a t e  of p r o p o r t i o n a t e  increase i n  t h e  

p r o b a b i l i t y  of l o s i n g  t h e  c o n t r a c t .  T h i s  i s  an i n t u i t i v e l y  

meaningfu l  r e s u l t  and i s  n o t  immediately obvious  from an  

examinat ion  of t h e  s t r u c t u r e  of  t h e  model. F i g u r e  1 p r e s e n t s  

a g r a p h i c  i l l u s t r a t i o n  of t h e  s o l u t i o n  of t h e  e q u a t i o n  

G ( p )  = H(p) . F i g u r e  2 i n d i c a t e s  what can  happen when t h e  

h a z a r d  r a t e  f u n c t i o n  is  d i s c o n t i n u o u s .  The same s o r t  of 

t h i n g  can  happen when G ( p )  i n s t e a d  of H(p) i s  d i s c o n t i n u o u s .  

F o r  t h e s e  cases po is  t h e  un ique  v a l u e  of p f o r  which 

t h e  e x p r e s s i o n  G(p)  - H ( p )  changes s i g n .  

i s  t h e  un ique  s o l u t i o n  o f  t h e  e q u a t i o n  PO 

< 
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3 .  Risk  Avers ion  and i t s  Measurement 

L e t  u be a u t i l i t y  f u n c t i o n  f o r  w e a l t h  w i t h  m a r g i n a l  

u t i l i t y  s t r i c t l y  p o s i t i v e .  The purpose  of  t h i s  s e c t i o n  i s  

t o  demons t r a t e  t h a t  t h e  f u n c t i o n s  A ( t )  = -u"  (t) / u t  ( t)  and 

P ( t ;  w) = - t u "  (t+w) / u '  ( t + w )  f o r  each  f i x e d  w can be 

i n t e r p r e t e d  a s  t w o  measures  of  r i s k  a v e r s i o n .  W e  se t  f o r t h  

t h e  economic meanings o f  A and P h e r e  because ,  as  w i l l  

be shown l a t e r ,  some impor t an t  compara t ive  s t a t i c s  p r o p e r t i e s  

o f  t h e  b i d d i n g  model can  be de t e rmined  from t h e  b e h a v i o r  

o f  t h e s e  t w o  f u n c t i o n s .  

W e  b e g i n  by d e f i n i n g  r i s k  a v e r s i o n .  An i n d i v i d u a l  i s  

a r i s k  averter if f o r  any a r b i t r a r y  r i s k  h e  p r e f e r s  t h e  

non-random amount e q u a l  t o  t h e  a c t u a r i a l  v a l u e  of t h e  r i s k  

t o  t h e  r i s k  i t s e l f .  L e t  w be h i s  i n i t i a l  w e a l t h  and z , 
a random v a r i a b l e ,  b e  h i s  income. H e  i s  r i s k  a v e r s e  i f  

(3 .1)  u[w + E ( z ) ]  > E[u(w+z)]  

where E i s  t h e  e x p e c t a t i o n  o p e r a t o r .  A n e c e s s a r y  and 

s u f f i c i e n t  c o n d i t i o n  f o r  (3 .1)  t o  ho ld  f o r  a l l  v a l u e s  of 

w and a l l  r i s k s  z is  t h a t  t h e  u t i l i t y  of w e a l t h  f u n c t i o n  

u be s t r i c t l y  concave ,  o r  e q u i v a l e n t l y  t h a t  it be  t h e  

i n t e g r a l  of  a s t r i c t l y  d e c r e a s i n g  m a r g i n a l  u t i l i t y  of w e a l t h  

f u n c t i o n  u '  . ( u '  m a y  be  assumed t o  be e i t h e r  t h e  r i g h t  

or t h e  l e f t  d e r i v a t i v e  of u i f  such  i s  c o n v e n i e n t . )  T h i s  

g u a r a n t e e s  
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for all t > 0 - (3.2) u"(t) < 0 

and a little more. 

- 

While (3.2) indicates the existence of (a weak form of) 

risk aversion, the magnitude of u"(t) has in itself no 

meaning. The reason is that if u is a von Neumann- 

Morgenstern utility function, then the preference ordering 

represented by E(u) does not change when the utility func- 

tion u is replaced by the utility function cu -I- b if c 

is positive. However, such transformations change the magni- 

tude of u"(t) , although they do not alter its sign. Thus 

the sign but not the magnitude of u"(t) is significant. 

The foregoing suggests that a measure of risk aversion 

should in some sense measure the concavity of 

remain invariant under positive linear transformations of 

the utility function. The functions A(t) = -u"(t)/u' (t) 

and P(t; w) = -tu"(t+w)/u' (t+w) fulfill both requirements 

and hence qualify as measures of risk aversion. We will show 

that these measures have straightforward behavioral interpre- 

tations. 

u and should 

A as a Measure of Risk Aversion 

A is called absolute risk aversion. Its role as a 

measure of risk aversion w a s  discovered independently by 

Kenneth J. Arrow [l], [ 21 ,  and by John W. Pratt [ 6 ] .  Pratt 

interprets A in terms of the risk premium T defined by 
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t h e  e q u a t i o n  

U[W + E ( z )  - R ]  = E [ u ( w + z ) ]  . 
IT c an  be r e g a r d e d  a s  t h e  maximum amount, beyond t h e  n e g a t i v e  

of t h e  expec ted  v a l u e  of t h e  r i s k  i t s e l f ,  which a n  i n d i v i d u a l  

w i t h  w e a l t h  e q u a l  t o  w would pay t o  i n s u r e  a g a i n s t  t h e  r i s k  

z . P r a t t  [ 5 ,  page 1251  i n d i c a t e s  t h a t  under  s u i t a b l e  regu-  

l a r i t y  c o n d i t i o n s  

( 3 . 3 )  IT = ( 0 2 / 2 ) A ( w  + E ( z ) )  4- o ( 0 2 )  

where o2 i s  t h e  v a r i a n c e  o f  z .  ( W e  u s e  o ( t )  t o  d e n o t e  

any  f u n c t i o n  which i s  of smaller o r d e r  of magni tude  t h a n  t 

n e a r  0 .  I n  p a r t i c u l a r ,  o(02)/02+0 as  o2+0.) Thus,  when 

a 2  i s  s m a l l ,  n ( 0 2 / 2 ) A ( w  + E ( z ) ) .  I t  f o l l o w s  t h a t  A ( w )  

i s  abou t  twice t h e  r i s k  premium p e r  u n i t  of v a r i a n c e  f o r  

" s m a 1 1 "  a c t u a r i a l l y  n e u t r a l  ( E ( z )  = 0 )  r i s k s .  N o t e  t h a t  

i n  view o f  ( 3 . 2 )  , t h e  r i s k  premium i s  non-negat ive .  

S t i l l  a n o t h e r  i n t e r p r e t a t i o n  of A h a s  been p rov ided  by 

Arrow [ 2 ,  pages 33 and 3 4 . 1  H e  c o n s i d e r s  a r i s k  which i n v o l v e s  

winning or  l o s i n g  an  amount h w i t h  p r o b a b i l i t i e s  p and 

1 - PI r e s p e c t i v e l y .  Given t h e  amount of t h e  b e t  h and 

t h e  i n i t i a l  w e a l t h  w, c o n s i d e r  t h e  p r o b a b i l i t y  p '  such  

t h a t  t h e  i n d i v i d u a l  is  j u s t  i n d i f f e r e n t  between a c c e p t i n g  

and r e j e c t i n g  t h e  b e t .  The v a l u e  of p '  i s  de termined  from 

t h e  e q u a t i o n  

U ( W )  = p'u(w+h) + ( l - p ' ) u ( w - h )  

u s i n g  f i n i t e  T a y l o r ' s  s e r i e s  expans ions  of u (wth )  and 

u(w-h) a b o u t  w.  Under  s u i t a b l e  r e g u l a r i t y  c o n d i t i o n s  on u 
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1 h  
2 p '  = - + z A ( W )  + o ( h ) .  

Thus f o r  s u f f i c i e n t l y  smal l  v a l u e s  of h ,  

( 3 . 4 )  p '  7 1 h  + ~ A ( w ) .  

I n  view of (3 .21 ,  p '  2 'z 1 . It f o l l o w s  t h a t  a b s o l u t e  r i s k  

a v e r s i o n  measures t h e  i n d i v i d u a l ' s  demand f o r  more- than- fa i r  

odds.  

A ( w )  may i n c r e a s e ,  d e c r e a s e ,  o r  remain c o n s t a n t  w i t h  

i n c r e a s i n g  wea l th .  A may b e  non-monotone f o r  some u t i l i t y  

f u n c t i o n s  and may be bounded o r  unbounded. 

( i n c r e a s i n g )  a b s o l u t e  r i s k  a v e r s i o n  means t h a t  t h e  i n d i v i d u a l  

w i l l  pay less (more) f o r  i n s u r a n c e  a g a i n s t  a g iven  r i s k  as 

Decreasing 

h i s  wea l th  i n c r e a s e s ;  a l t e r n a t i v e l y ,  t h a t  t h e  s i z e  of f a v o r -  

a b l e  odds r e q u i r e d  t o  s t a k e  a g iven  amount d imin i shes  ( i n -  

creases) w i t h  i n c r e a s i n g  w e a l t h .  

R as a Measure of  Risk Aversion 

p (t; w) = -tu1'  ( t + w )  / u t  ( t + w )  has  so f a r  a s  w e  know n o t  

appeared  i n  t h e  l i t e r a t u r e  p r i o r  t o  t h i s .  However, it appea r s  

t o  be a v a r i a n t  of t h e  measure R ( t )  = - t u "  ( t ) / u '  (t) , which 

i s  c a l l e d  r e l a t i v e  r i s k  a v e r s i o n  by Arrow and p r o p o r t i o n a l  

r i s k  avers ion  by P r a t t .  The comparat ive s t a t i c s  of t h e  

b i d d i n g  model do no t  depend on t h e  behavior  of R ,  b u t  s i n c e  

A r r o w  and P r a t t  have provided! an i n t e r p r e t a t i o n  f o r  R ,  w e  

look a t  t h i s  measure i n  o r d e r  to o b t a i n  a c l u e  a s  t o  how t o  

i n t e r p r e t  P. 
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The interpretation of R follows quite easily from 

that of A. Suppose the risk premium and the risk itself 

are measured not in absolute terms but as proportions of 

initial wealth. Let r0 = TT/W and z = z/w denote the 

proportional risk premium and the proportional risk, respec- 

tively. Then, as Pratt shows ,  if z is actuarially 

neutral (i.e., if E ( Z O )  = 0 1 ,  

0 

0 

no = (a2/2)R(w) + o( Is*) ,  

0 where cr2 is now the variance of z . A similar interpre- 

tation is provided by Arrow. Let h = h w, so that ho is 

the fraction of wealth at stake. Then, Arrow shows that 

0 

p'  = + R(w) + o(h0). 

Relative risk aversion may increase, decrease, or re- 

main constant with increasing wealth. Increasing (decreas- 

ing) relative risk aversion means that the proportion of 

wealth spent for insurance increases (decreases) when wealth 

and risk are increased in the same proportion; alternatively, 

that the size of favorable odds demanded increases (decreases) 

when wealth and bet size are increased in the same proportion. 

P as a Measure of Risk Aversion 

We are now in a position to interpret the function P 

as a measure of risk aversion. Suppose the individual's 
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w e a l t h  w i s  i n c r e a s e d  by a n  a r b i t r a r y  amount t .  Now 

measure t h e  r i s k  premium and t h e  r i s k  i t s e l f  a s  p r o p o r t i o n s  

of t .  L e t  IT = n / t  and z = z / t  deno te  t h e  r i s k  p re -  

mium and t h e  r i s k  r e s p e c t i v e l y ,  each measured as  a pro-  

p o r t i o n  of t h e  i n c r e a s e  i n  w e a l t h .  Under s u i t a b l e  

r e g u l a r i t y  c o n d i t i o n s  it can be shown t h a t  

- - 

( 3 . 5 )  o2  P [ t ( l + E ( z ) )  ;w] + o (02 )  
- 
I T =  2 (1+E (E) ) 

- 
where cr2 i s  t h e  v a r i a n c e  of z . I f  E(:) = 0 then  
- 
T %  ( 0 2 / 2 ) P ( t ; w ) .  

The measure P can  a l s o  be i n t e r p r e t e d  i n  t e r m s  of 

t h e  more- than- fa i r  odds concept .  L e t  h = E t ,  so t h a t  

h i s  t h e  f r a c t i o n  of a d d i t i o n a l  wea l th  t h a t  i s  a t  s t a k e  

Then it i s  e a s y  t o  show t h a t  

- 

1 I T  p '  = - + h P ( t ; w )  + o(T;;). ( 3 . 6 )  2 

A t  a formal  level t h e  measures  R and P appear  

t o  be q u i t e  s i m i l a r .  However, t h e y  are  a s s o c i a t e d  w i t h  

two d i f f e r e n t  t y p e s  of b e t t i n g  s i t u a t i o n .  R e l a t i v e  r i s k  

a v e r s i o n  i s  r e l e v a n t  when t h e  r a t i o  o f  t h e  b e t  s i z e  t o  

w e a l t h  i s  be ing  cons idered .  The f u n c t i o n  P i s  

impor t an t  when t h e  r a t i o  of t h e  b e t  s i z e  t o  a d d i t i o n a l  

w e a l t h  i s  under c o n s i d e r a t i o n .  Note t h a t  i f  t h e  r a t i o  

of t h e  b e t  s i z e  t o  weal th  remains c o n s t a n t  t h e n  t h e  

r a t i o  of t h e  b e t  s i z e  t o  a d d i t i o n a l  wea l th  d e c r e a s e s  
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as  wea l th  i n c r e a s e s .  Conversely,  i f  t h e  r a t i o  of t h e  b e t  

s i z e  t o  a d d i t i o n a l  w e a l t h  i s  k e p t  c o n s t a n t  t h e n  t h e  r a t i o  

of  t h e  be t  s i z e  t o  wea l th  must increase as  wea l th  i n c r e a s e s .  

The fo l lowing  p r o p o s i t i o n s  and d i s c u s s i o n  are  i n t e n d e d  

t o  p rov ide  some i n s i g h t  i n t o  t h e  behav io r  of  P .  For t h e  

remainder  of  t h i s  s e c t i o n  w e  assume t h a t  u i s  non-decreas- 

i n g ,  t h a t  u i s  concave ( b u t  n o t  n e c e s s a r i l y  s t r i c t l y  con- 

c a v e ) ,  t h a t  u has  a cont inuous  f i r s t  d e r i v a t i v e  u t ,  

and t h a t  u t  i s  t h e  i n t e g r a l  o f  some f u n c t i o n  u" ( p o s s i b l y  

t h e  r e g u l a r  d e r i v a t i v e ,  t h e  r i g h t  d e r i v a t i v e ,  o r  t h e  l e f t  

d e r i v a t i v e  of u ' ) .  

P r o p o s i t i o n  1: F ix  w. I f  P ( t ; w )  i s  non- increas ing  i n  

t f o r  t i n  some i n t e r v a l  ( O f t o )  w i t h  to > 0 ,  t h e n  

e i t h e r  P ( t ; w )  = 0 (and consequent ly  u" ( t + w )  = 0 f o r  

0 < t < to o r  e l se  w = 0 .  

Proof: P ( t ; w )  is non-negat ive.  Assume it i s  non- 

i n c r e a s i n g  and n o t  i d e n t i c a l l y  zero f o r  

Then l i m  P ( t ; w )  > 0 .  N o w  u '  i s  non- increas ing  

0 < t < to. 

t . b  0 

and non-negat ive and c a n ' t  be i d e n t i c a l l y  ze ro  on ( 0 ,  

i f  P ( t ; w )  i s  t o  make sense. Thus w e  f i n d  a > 0 ,  

b > 0 such t h a t  f o r  0 < t < b w e  have P ( t , w )  > a 

and u ' ( t + w )  > a .  Then f o r  0 < t - < b 

- 

a a2 uI1 ( t - tw)  < - - u '  ( t - t w )  < - - t t 
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and integrating gives 

u'(w+b) - u'(w) < /t)dt = --03 

so that u'(w) = +a. Because u' is non-increasing this 

can happen only when w = 0 

functions. 

and then only for some utility 

Proposition 2: Fix w > 0 and suppose > 0. If P(t; w) 

is monotone (strictly monotone) in t for 0 < t < to, 

then it is non-decreasing (strictly increasing) there. 

Proof: Suppose P(t; w) is non-increasing for 0 < t < to. 

Then by Proposition 1 we have P(t; w) = 0 0 < t < to. 

Thus P(t; w) can't be strictly decreasing for 0 < t < to, 

and if it is non-increasing it is in fact also non-decreasing 

since it is a constant. 

for 

0 
These two propositions indicate that if w > 0 and 

we for some reason believe P(w; t) to be monotone in t, 

then we must believe either that P(w; t) is strictly in- 

creasing in t or that u(t) is linear. If we require 

strict concavity of u, then we can rule out the latter. 

Unfortunately, fluctuations are possible. It is possible to 

construct a bounded or unbounded utility function with a 

continuous second derivative for which P is not monotone 

or for which R is not monotone. It would thus seem that 

any assumptions about the monotonicity of P must be made 

on the basis of either intuitive of empirical considerations. 
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We conclude this section with the following observa- 

tion: 

Proposition 3 :  If either A(t) or R(t) is non-decreasing 

then either u"(t) f 0 ( so  that u is linear), or else 

P(t; w) is a strictly increasing function of t for each 

fixed w. 

4 .  Comparative Statics of the Biddina Model 

Recall that in Section 2 an optimal bid price was 

defined as any value of p which maximizes expected utility 

E(p;c,w,n) for given values of the parameters c, w, and 

n. It was demonstrated that under economically meaningful 

conditions there exists a unique optimal bid price 

The purpose of this section is the investigation of the 

change in the optimal b i d  price po caused by independent 

variations in the three parameters c, w, and n. Both the 

direction of change of 

of interest. 

PO 

po and bounds on its magnitude are 

Throughout this section we will assume, unless specifi- 

cally stated otherwise, that changes in the parameters c, 

w, and n will not cause the seller to revise his estimate 

of the bidding behavior of his competitors. Thus the proba- 

bility distribution F(p), and hence the hazard rate func- 

tion H ( p ) ,  are assumed fixed under changes in c, w, and 

n. This is, of course, a reasonable assumption for changes 

, 
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I -  

i n  w,  and a l s o  f o r  changes i n  C t h a t  are  i n t e r n a l  t o  

t h e  f i r m .  

fo r  a change i n  n 

a l l  f i r m s  competing fo r  t h e  c o n t r a c t .  L a t e r  i n  t h i s  sec- 

t i o n  w e  w i l l  comment on how o u r  a n a l y s i s  must be ex tended  

i n  order t o  t a k e  i n t o  account  r e v i s i o n s  i n  t h e  s e l l e r ' s  

es t imate  o f  t h e  b i d d i n g  behavior o f  h i s  c o m p e t i t o r s .  

T h e  assumpt ion  might  be somewhat u n r e a l i s t i c  

s i n c e  such  a change d i r e c t l y  a f f e c t s  

The E f f e c t  on t h e  Optimal  Bid P r i ce  

of a Change i n  Average Cos t  

-- 

- - -  

The r e s u l t s  o f  t h i s  s u b s e c t i o n  are  summarized i n  t h e  

f o l l o w i n g  theorem. 

Theorem 3: Suppose c o n d i t i o n s  ( A l )  , ( A 2 a )  , and (A3a) are 

s a t i s f i e d  and t h a t  u' and f are t h e  r i g h t  d e r i v a t i v e s  

of u and F r e s p e c t i v e l y .  I f  t h e  a v e r a g e  c o s t  c i s  

raised (lowered) by a n  amount Ac, t h e n  t h e  new optimal 

b id  p r i c e  p1 satisfies t h e  i n e q u a l i t i e s  

(4.1) 

where 

are c o n t i n u o u s ,  t h e n  

Po 5 P 1  5 Po + *c (Po L p1 L Po - Ac) 

i s  t h e  o r i g i n a l  o p t i m a l  b id .  I f  u '  and f PO 

( 4 . 2 )  Po < p 1  (Po > P,) 

I f ,  i n  a d d i t i o n ,  t h e  hazard  r a t e  f u n c t i o n  i s  s t r i c t l y  

i n c r e a s i n g  t h e n  

( 4  3 )  P1 < Po + Ac (P1 > Po - Ac) - 

, 
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Proof :  

Note t h a t  t h e  b a s i c  assumptions used i n  t h i s  theorem 

are t h e  same ones  t h a t  were used i n  Theorem 2 .  W e  a re  

t h u s  gua ran teed  t h e  e x i s t e n c e  and uniqueness  of o p t i m a l  

b i d s  f o r  t h e  v a r i o u s  v a l u e s  of  c under c o n s i d e r a t i o n  

provided o n l y  t h a t  t hey  are a l l  less than  X (see ( 2 . 4 ) ) .  

E a r l i e r  w e  de f ined  and i n t e r p r e t e d  t h e  f u n c t i o n s  

Theorems 1 and 2 w e  know t h a t ,  f o r  f i x e d  c ,  w ,  and n ,  

t h e  expec ted  u t i l i t y  E ( p ;  c ,  w,  n) has  i t s  unique  

maximum a t  

G(p) - H(p) changes s i g n .  E q u i v a l e n t l y ,  po i s  t h e  

' ' c rossover  p o i n t "  of the  g raphs  of G(p) and H(p)  

(see F i g u r e s  1 and 2 ) .  One might therefore  e x p e c t  t o  

o b t a i n  some in fo rma t ion  about  t h e  d i r e c t i o n  of change 

i n  po from t h e  s h i f t s  i n  t h e  graphs  of G(p) and H(p) 

due t o  a change i n  t h e  parameter  c. 

t h e  p o i n t  where t h e  e x p r e s s i o n  PO ' 

By assumption t h e  graph of H(p) does n o t  change when 

c changes.  However, f o r  f i x e d  p and c < p ,  w e  see t h a t  

u ' [ n ( p - c )  + w] i s  non-decreasing i n  c and u [ n ( p - c )  + w] 

i s  s t r i c t l y  d e c r e a s i n g  i n  c ,  so t h a t  ~ ( p )  = p . p - c ) + w l  u n p-cl +w] -u ( w )  

i s  a s t r i c t l y  i n c r e a s i n g  f u n c t i o n  of c .  T h i s  argument 

shows t h a t  t h e  whole graph of G(p) i s  r a i s e d  when c 

, 
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increases and lowered when c decreases. (Refer back 

to Figures 1 and 2 to visualize this.) Thus po is a 

is a strictly in- non-decreasing function of c. 

creasing function of c if both f and u1 are con- 

' tinuous so that G and H are continuous. The var ious  

PO 

1' cases provide the proper inequalities between Po and P 

nu' (nt+w) Now let t = p - c so that G(t+c) = u(nt+w) - u(q 

(t+c) For fixed c, the "crossover point" l-F(t+c) and H(t+c) = 

- c. - 
to - Po of the graphs of G(ttc) and H(t+c) is just 

The function G(t+c) (and therefore its graph) does not depend 

on c, while H(t+c) is non-decreasing in c for each fixed t. 

It follows (see Figure 3 )  that 

of c. (to is a strictly decreasing function of c if H is 

strictly increasing and if both u 1  and f are continuous- - 
so that G and H are continuous.) In particular, if tl and 

p1 

of c + Ac, 

to is a non-increasing function 

are the "crossover points" corresponding to an average cost 

if Ac > 0, then p1 - (C + Ac) = tl < to - - Po - c - 
+ Ac. (We get strict inequality or equivalently, L p, 

if to is a strictly decreasing function of c.) The other 

inequalities follow by considering a decrease in c by an 

amount AC. 0 
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I I ' + t  
0 A-C 

G (t+c) 
H ( t - t c )  

I 
i 

, + t  I 
0 A-C 

F i g u r e  3 

, 
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The conclusions of this theorem are intuitively quite 

appealing. Suppose average cost is increased by an amount 

Ac. If the bid price is left unchanged, potential average 

profit will decline from (po - c) to (Po - C - AC). 
Note that the probability of getting this smaller profit 

is still 1 - F(po). A smaller profit is now associated 

with the former probability of success, and the theorem 

tells us that the bidder "trades off" some of his 

probability of success for an increase in his potential 

profit. He therefore raises his bid price. However, 

since the bidder is risk averse, his willingness to 

"trade off" probability of success for potential profit 

declines as potential profit increases and probability 

of success decreases. In particular, the theorem tells 

us that he is totally unwilling to continue this type 

of "trade off" once he has obtained his old level of 

potential average profit. 

The Effect on the Optimal Bid Price -- 
- -  of a Change - in Initial Wealth 

The result of this subsection depends on an assumed 

monotonicity of the absolute risk aversion function A .  

Our result gives the direction of change in the bid price 

due to a change in initial wealth, but gives no bound on 

this change. 
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Theorem 4 :  Suppose conditions (Al) , (A3a), 
u is strictly increasing, concave, and con- 

tinuously differentiable, 

u' 

of its right derivative u", 

is right differentiable and is the integral 

are satisfied, and that c and n are fixed. If the bidder's 

initial wealth is raised (lowered), and if the function A 

is non-increasing, then the new optimal bid price p1 satis- 

fies the inequality 

(4.4) Po 5 P1 (Po 1 PI) 
If, in addition, f is continuous and A is strictly de- 

creasing, then the inequalities above are strict. If A 

is non-decreasing (strictly increasing) instead of non- 

increasing (strictly decreasing), then the inequalities are 

reversed. 

Proof: 

We begin by finding an equivalent expression for G(p). 

Setting e = n(p - c) , we have 

= { (p-C) [u'(t3~+w)/u'(f3+w)ld-r)-~ 1: 
where we have made the change of variables t = 8-r. Using 

the fact that a/b = exp(1og a - log b) when a and b 
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are positive, we obtain 

G(p) = [(p-c)Jiexp(log u'(~T+w) - log u1(0+w))d-rl-l 

where we have made the change of variables 

have noted that the reversal of the limits of integration 

x = Oy, and 

changes the sign of the integral. 

G(p) is 

Our final expression for 

B y  hypothesis, H is not affected by changes in w. 

However, from ( 4 . 5 )  we see that if A is non-increasing 

(strictly decreasing, non-decreasing, strictly increasing), 

then G(p) is a non-decreasing (strictly increasing, non- 

increasing, strictly decreasing) function of w for each 

fixed p.  

The remainder of the proof uses the arguments of Theorem 3 

and will be omitted. 

Theorem 4 indicates the relationship between the be- 

havior of the absolute risk aversion function A and the 

direction of change in the bid price due to a change in 

initial wealth. It might be helpful to look at this result 
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I 
I . -  

I 

i n  i n t u i t i v e  t e r m s .  Suppose t h a t  A d e c r e a s e s  w i t h  w e a l t h ,  

i . e . ,  an i n d i v i d u a l ' s  w i l l i n g n e s s  t o  engage i n  a b e t ,  as 

measured e i t h e r  by t h e  r i s k  premium o r  by t h e  f a v o r a b l e  odds 

demanded, increases wi th  weal th .  T h i s  means t h a t  a s  h i s  

wea l th  i n c r e a s e s ,  t h e  b idde r  r a i s e s  h i s  b i d  p r i c e  (conse-  

q u e n t l y  r educ ing  1 - F ( p ) ,  h i s  p r o b a b i l i t y  of g e t t i n g  t h e  

c o n t r a c t )  i n  o r d e r  t o  i n c r e a s e  p o t e n t i a l  (and,  i n c i d e n t a l l y ,  

a l s o  expec ted)  p r o f i t .  The o p p o s i t e  t y p e  of  argument can 

be used  t o  e x p l a i n  t h e  claim of  Theorem 4 t h a t  t h e  b i d  

p r i c e  d e c r e a s e s  i f  A i n c r e a s e s  w i t h  wea l th .  

Whether A i n c r e a s e s  o r  d e c r e a s e s  w i t h  wea l th  would 

s e e m  t o  be an e m p i r i c a l  r a t h e r  t h a n  a t h e o r e t i c a l  i s s u e .  On 

t h e  b a s i s  of i n t u i t i v e  evidence and c a s u a l  o b s e r v a t i o n  w e  a r e  

i n c l i n e d  t o  a c c e p t  A r r o w ' s  [ 2 ,  page 351 h y p o t h e s i s  t h a t  abso- 

l u t e  r i s k  a v e r s i o n  dec reases  w i t h  wea l th .  

The E f f e c t  on t h e  Optimal Bid P r i ce  - -- 
of a Change i n  C o n t r a c t  S i z e  - -  - 

The f i r s t  theorem of t h i s  s u b s e c t i o n  g i v e s  t h e  d i r e c t i o n  

of change of t h e  op t ima l  b i d  p r i c e .  I t  depends on an assumed 

mono ton ic i ty  o f  t h e  f u n c t i o n  P ( t ;  w)  i n t r o d u c e d  a t  t h e  

beginning  of s e c t i o n  3 .  (Recall  t h a t  p r o p o s i t i o n  2 of 

t h a t  s e c t i o n  s t a t e s  t h a t  i f  P ( t ;  w) i s  monotone i n  t ,  

t h e n  it must be non-decreasing.)  Our o t h e r  theorem p rov ides  

a bound on t h i s  change. 
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Theorem 5: Suppose conditions (241) , (A2b), (A3a), and ( A 4 )  

are satisfied and that c and w are fixed. If the contract 

size is increased (decreased) , and if the function P(t; w) 

is non-decreasing in t, then the new optimal bid price p1 

satisfies the inequality 

(4.6) Po 1 P1 (Po 5 P,) 
If, in addition, f is continuous and P(t; w) is a strictly 

increasing function of t, then the inequalities above are 

strict. 

Proof: 

From (4.5) and the definitions of A and P we see that 

( 4 . 7 )  G(P) = [(p-~)/~exp[/ 1 1 (l/y)P(n(p-c)y;~)dyld~l -1 . 
T 

The proof of this theorem is essentially a repetition of the 

proof of theorem 4 using ( 4 . 7 ) ,  P, and n instead of ( 4 . 5 ) ,  

A, and w. We omit it. a 
Under the assumption that P(t; w) is a non-decreasing 

function of t, one's intuition agrees with the theorem's 

description of the bidder's behavior. If the contract size 

is increased from n to n + An, then both the bidder's 

potential profit and his expected profit are multiplied by 

a factor of (n + An)/n if he maintains his old bid price 

(and if his opponents' bidding behavior is unchanged). PO 
It is intuitively reasonable that he should "trade off" some 

of his additional potential profit (and expected profit) for 

some extra probability of success (extra safety). Thus he 



. ' . .  

- 3 3  - 

should  lower h i s  b i d  p r i c e .  

I '  
I 

. 

Note t h a t  Theorem 5 does n o t  i n d i c a t e  how much of h i s  

a d d i t i o n a l  p o t e n t i a l  p r o f i t  t h e  b i d d e r  w i l l  " t r a d e  o f f "  f o r  

an i n c r e a s e  i n  h i s  p r o b a b i l i t y  of s u c c e s s .  The fo l lowing  

theorem bounds t h i s  " t r a d e  o f f .  

Theorem 6: Suppose c o n d i t i o n s  ( A l ) ,  ( A 2 a ) ,  and (A3a) a r e  

s a t i s f i e d ,  t h a t  c and w are  f i x e d ,  and t h a t  u '  and 

f are t h e  r i g h t  d e r i v a t i v e s  of  u and F r e s p e c t i v e l y .  

Then p o t e n t i a l  p r o f i t  i s  a non-decreasing f u n c t i o n  of n .  

I n  p a r t i c u l a r ,  i f  t h e  c o n t r a c t  s i z e  n i s  r a i s e d  ( lowered)  

by an amount An, t h e n  t h e  new o p t i m a l  b i d  p r i c e  p1 sa t i s -  

f ies  t h e  i n e q u a l i t y  

I f ,  i n  a d d i t i o n ,  u '  and f are  con t inuous ,  t hen  t h e  

i n e q u a l i t i e s  above a re  s t r i c t .  

P roof :  

The proof  of t h i s  theorem i s  q u i t e  s i m i l a r  t o  t h e  proof 

of  t h e  second p a r t  of Theorem 3 .  W e  l e t  s = n(p -c )  , s o  t h a t  

For  f i x e d  c and n ,  t h e  n c r o s s o v e r  p o i n t "  s of  t h e  

g r a p h s  of G(, + c)  and H ( n  + c) a s  f u n c t i o n s  of s i s  

j u s t  n ( p o  - c)  . For each f i x e d  s w e  see t h a t  G ( n  + c) 

i s  a s t r i c t l y  i n c r e a s i n g  f u n c t i o n  of  n ,  and H ( n  + c) i s  

0 

S S 

S 

S 
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a non- increas ing  f u n c t i o n  of n s i n c e  H ( t )  i s  non- increas ing  

i n  t .  Thus s i s  a non-decreasing f u n c t i o n  of n (and 

i s  s t r i c t l y  i n c r e a s i n g  i f  both u '  and f are c o n t i n u o u s ) .  

The i n e q u a l i t i e s  a r e  an  immediate consequence of  t h i s .  

0 

&13 
Again, t h e  r e s u l t s  of  t h i s  theorem a r e  q u i t e  r easonab le .  

One would e x p e c t  a t  l e a s t  a s  l a r g e  a t o t a l  p o t e n t i a l  p r o f i t  

on a l a r g e  o r d e r  as on a smal l  o r d e r  even i f  t h e  p r o f i t  p e r  

u n i t  were s m a l l e r .  

Theorems 5 and 6 t o g e t h e r  i n d i c a t e  t h a t  i f  t h e  c o n t r a c t  

s i z e  n i s  r a i s e d  by an amount An, t h e n  t h e  new op t ima l  

b i d  p r i c e  p1 s a t i s f i e s  t h e  i n e q u a l i t i e s  

The i n e q u a l i t i e s  are r e v e r s e d  i f  t h e  c o n t r a c t  s i z e  i s  lowered 

by an m o u n t  An. 

The preceding  a n a l y s i s  has  been based on t h e  assumption 

' t h a t  average  cost i s  c o n s t a n t .  W e  now c o n s i d e r  b r i e f l y  how 

varies w i t h  n when average  cost  c depends on t h e  PO 
l e v e l  of o u t p u t .  The a n a l y s i s  f o r  d e c r e a s i n g  average  c o s t  

i s  s t r a i g h t f o r w a r d .  Suppose an i n c r e a s e  i n  c o n t r a c t  s i z e  

from n t o  n + An d e c r e a s e s  average  cost  from c t o  

c - Ac. The e f f e c t  of such a change on t h e  o p t i m a l  b i d  p r i c e  

can be decomposed i n t o  two p a r t s .  F i r s t ,  w e  have seen  t h a t  

an  i n c r e a s e  i n  c o n t r a c t  s i z e  of An w i t h  c o s t  remaining 

c o n s t a n t  a t  c w i l l  reduce t h e  b i d  p r i c e .  S i m i l a r l y ,  a 

n e t  d e c r e a s e  i n  average  c o s t  of Ac w i t h  c o n t r a c t  s i z e  

c o n s t a n t  a t  n + An w i l l  d e c r e a s e  t h e  b i d  p r i c e  even f u r t h e r .  
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These two e f f e c t s  t o g e t h e r  l o w e r  t h e  b i d  p r i c e  more than  

e i t h e r  one does by i t s e l f .  

t i o n  of c o n t r a c t  s i z e ,  t h e  two e f f e c t s  work i n  o p p o s i t e  

d i r e c t i o n s .  

d e c r e a s e  depends on t h e  s i z e  of t h e  i n c r e a s e s  i n  c o n t r a c t  

s i z e  and cost ,  and on t h e  s p e c i f i c  u t i l i t y  f u n c t i o n  of t h e  

b i d d e r .  

For  c o s t  a s  an i n c r e a s i n g  func- 

Whether t h e  op t ima l  b i d  p r i c e  w i l l  i n c r e a s e  or  

Remarks about  t h e  E f f e c t  on t h e  Optimal Bid Pr ice  -- 
o f  a Change i n  t h e  P r o b a b i l i t y  D i s t r i b u t i o n  F. - - -  -- 

Changes i n  F r e p r e s e n t  r e v i s i o n s  i n  t h e  b i d d e r ' s  be- 

l i e f s  about  t h e  b idd ing  behavior  of  h i s  c o m p e t i t o r s .  Such 

changes can  be d e a l t  w i th  i f  t h e y  can be expres sed  a s  appro- 

p r i a t e  changes i n  t h e  hazard r a t e  f u n c t i o n  H .  Suppose, f o r  

example, t h a t  t h e  b i d d e r  b e l i e v e s  t h a t  t h e  minimum of h i s  

c o m p e t i t o r s '  b i d  p r i c e s  i s  i n c r e a s e d  by t h e  amount A c  (due,  

pe rhaps ,  t o  an i n c r e a s e  of Ac i n  t h e  costs of  each of h i s  

c o m p e t i t o r s ) .  One way of e x p r e s s i n g  t h i s  r e v i s i o n  i n  h i s  

b e l i e f s  i s  by s e t t i n g  F*(p)  = F ( p  - Ac), where  F* and 

F are t h e  d i s t r i b u t i o n  f u n c t i o n s  e x p r e s s i n g  h i s  new and o l d  

b e l i e f s  about  t h e  minimum of  h i s  c o m p e t i t o r s '  b i d  p r i c e s .  

I f  H* and H are t h e  cor responding  haza rd  r a t e  f u n c t i o n s ,  

t h e n  H*(p) = H(p - A c ) ,  and i f  H i s  non-decreas ing ,  t hen  

u s i n g  H* i n s t e a d  of  H amounts t o  lowering t h e  whole  H 

cu rve  (or  a t  l e a s t  t o  not  r a i s i n g  it anywhere).  Thus, t h e  

, 
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intersection of the curves of H* and G will be to the 

right of the intersection of the curves of H and G and 

will therefore result in a higher bid price. Notice that 

this type of argument can still be used even if the relation 

between F* and F is not clearly defined so long as the 

bidder is willing to assume that H* is non-decreasing an6 

that H*(p) < H(p) for all p. In many cases this would be 

a reasonable assumption. It merely amounts to assuming that 

if the minimum of his competitors' bid prices is at least 

then it is at least as likely to be close to 

old distribution F as under the new distribution F*. 

5. Possible Extensions of the Model 

- 

p, 

p under the 

The model developed in this paper is formulated for compe- 

titive sealed tender selling markets. 

the model is applicable to individual bidding behavior in 

sealed tender buying markets and Dutch auctions. 

With minor modifications, 

A promising application of the model is in the study of 

investment decisions associated with the submission of proposals 

for the acquisition of Research and Development ( R  & D) con- 

tracts. We briefly describe the mechanics of one kind of 

R & D contract market.4 

firms competing for a single contract to produce a specified 

The market consists of a group of 

(4) We are indebted to Walter L. Johnson for information about 
the institutional features of this market. 

, 
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I '  

q u a n t i t y  of a new p roduc t .  The p roduc t  i s  d e f i n e d  i n  t e r m s  

o f  c e r t a i n  "Standards  of performance" and cannot  be  produced 

w i t h  e x i s t i n g  technology.  

t o  submit a p r o p o s a l  on or b e f o r e  a g iven  f u t u r e  d a t e .  

p r o p o s a l  c o n s i s t s  of (1) a d e t a i l e d  s t a t e m e n t  of t h e  produc- 

t i o n  p r o c e s s  t h e  f i r m  w i l l  u s e  i f  awarded t h e  c o n t r a c t  and 

( 2 )  a b i d  p r i c e .  The c o n t r a c t  i s  awarded t o  t h e  lowest b i d d e r  

Each p a r t i c i p a t i n g  f i r m  i s  r e q u i r e d  

The 

f r o m  among t h e  p r o p o s a l s  t h a t  m e e t  t h e  r e q u i r e d  s t a n d a r d s  of  

per fonnance .  

I n i t i a l l y  each f i r m  must d e c i d e  whether t o  beg in  t h e  

R & D R 8, D work necessa ry  f o r  submission of a p roposa l .  

costs, p roduc t ion  costs ,  and t h e  payoff a r e  a l l  unknown a t  

t h i s  t i m e .  

p r o p o s a l  submission d e c i s i o n s  might  be t h e  e x t e n s i o n  of t h e  

model developed i n  t h i s  paper  t o  t h e  case where p roduc t ion  

A f i r s t  s t e p  toward a model e x p l a i n i n g  R & D 

costs c are assumed t o  be  random. Such a model would, of 

c o u r s e ,  be  u s e f u l  i n  i t s e l f .  

U n i v e r s i t y  of Missour i ,  Columbia 

, 
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